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A method is proposed which makes possible a more reliable determination of the adsorption 
order from the dependence of coverage on exposition in the case of adsorption with a mobile 
precursor. It is pointed out that the evaluation of experiments carried out at a single temperature 
may lead to erroneous conclusions. The method is also advantageous for the more exact determina
tion of the limiting coverage and the slope of the tangent at the origin of coordinates. 

Data about the dependence of the surface coverage by adsorbed particles on the 
time of exposure are frequently obtained from experiments in the field of surface 
science. Their analysis gives information about the character of the adsorption 
kinetics, whether it proceeds by the molecular or dissociative mechanism, etc. Our 
aim is to show that the usual interpretation of experimental data may lead to results 
which are both qualitatively and quantitatively incorrect, especially in the rather 
frequent case where adsorption proceeds via weakly adsorbed mobile particles, 
so-called precursor. We shall deal with the model introduced by Kisliuk l ,2, which 
corresponds to the Langmuir model supplemented by the intermediate stage men
tioned. The underlying assumptions are as follows: (1) No interactions between the 
chemisorbed particles take place. (2) The chemisorbed layer is in an equilibrium 
state. (3) The probability, oc, of trapping into the state of a weakly adsorbed mobile 
precursor is independent of the coverage in the chemisorbed layer. 

In the case of molecular adsorption (further denoted KI), the model is uniquely 
defined by the above assumptions. For dissociative adsorption, two variants must 
be distinguished3 : precursor existing above one adsorption center (variant K2 1) 

and precursor existing above a couple of neighbouring adsorption centers (variant 
K2 2 ). Equations for the dependence of coverage on exposition in each case will be 
derived below. 

Adsorption Kinetics 

The increment of the number of adsorbed particles (or occupied adsorption centers) 
can be expressed as4 

dn = ms(J' dt, {l) 
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where n denotes the number of occupied adsorption centers per unit surface area, m 
adsorption order (1 for molecular, 2 for dissociative adsorption), s sticking probabi
lity, (1 number of impacts per unit surface area and unit time, and t time. If the 
adsorption proceeds at constant pressure, (1 is constant. The coverage e is defined 
as the ratio of the number of occupied adsorption centers n to their maximum 
number nM , hence Eq. (1) can be rewritten as 

(1 

de = ms- dt. 
nM 

(2) 

In order to integrate this equation, we need to know the dependence of the sticking 
probability on the coverage. On the basis of the model considered, there are several 
methods3 •5 - 8 how to derive the desired dependence; if they are used correctly, they 
lead to identical results. Perhaps the most illustrative is the method used by Cassuto 
and King3 , which describes the adsorption kinetics by means of the rate constants, 
kD , kM' and kA , of the elementary steps (desorption, migration, and chemisorption) 
of the mobile precursor. Considering the above model, we can express their results 
as follows: 

(Kl) s/so = (1 - e)/(l - DI D2 e) , (3a) 

s/so = (1 - ey 
1 - DIe - DID2 e(1 - e)' 

(3b) 

(3c) 

The constant DI can be expressed as the ratio of the sticking probability, So, at zero 
coverage to the probability of trapping IX 

(4a) 

and the constant D2 can be expressed as 

(4b) 

The constants DI and D2 are in the range from 0 to 1. Zero value of D2 (kM = 0) 
means that the precursor is immobile, in which case the variants K1 and K22 become 
identical with the Langmuir model of the first or second order. 

With regard to the form of equations (3a - c), it is convenient to write equation 
(2) in the form 
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So de 
s 

Equations (3a-c) can now be introduced into (5) and integrated to give 

(Kl) 

(5) 

As stated above, the case D2 = 0 leads to the Langmuir model of the first and 
second order, to which equations (6a) and (6c) are reduced. These equations represent 
the dependence of the coverage on the time or exposition corresponding to the given 
model, and can be compared with experimental data, as usual. It is convenient for 
further discussion to introduce the generalized time variable 

(7) 

In this way, all curves with the same constant Dl and D2 regardless of the values of So, 

(J, and nM fuse together. Typical dependences of e on e are shown in Fig. 1, where 
curve 1 corresponds to constant sticking probability, curves 2 and 3 correspond 

FIG. I 

Dependence of coverage on Ii (proportional 
to exposition). 1 Constant sticking probabi
lity; 2 Langmuir model of first order; 3 Lang
muir model of second order; 4 Kisliuk model 
of first order (Kl), DID2 = 0'5; 5 Kisliuk 
model of second order (K21), Dl = 0'9. 
D2 = I 
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to the Langmuir model of the first and second order. All curves for the Kisliuk 
model of the first order lie in the region delimited by curves 1 and 2. In the case 
of both variants of the second-order model, the situation is more complicated. The 
curves can either lie in the region between curves 2 and 3, or, at low expositions, 
between curves 1 and 2 and with increasing exposition they may intersect curve 2 
and pass into the region between curves 2 and 3. It can be seen from Fig. 1 that the 
dependences for the first and second order are similar in certain cases (curves 4 and 
5). With regard to possible errors in the determination of the total coverage (i.e. 
exposition time at which the surface is saturated), it is possible that the experimental 
data can be fitted by curves of the first and second order equally well. A method for 
elimination of this ambiguity is proposed below. 

Treatment of Experimental Data 

It is apparent from equation (2) that the slope d8/dt in the limit for zero coverage 
( or time) is equal to the multiplier standing before t in Eq. (7) for the generalized 
time variable. The construction of a tangent to the experimental curve (graphically 
or numerically) may be problematical, although in the given case the dependence 
of 8 on t for low expositions is nearly linear. To eliminate possible errors, we pro
ceed as follows. We introduce new coordinates 

y = -t X = -8 
In (1 - 8) , In (1 - 8) 

(8a,b) 

The variable X is equal to 1 for 8 = 0 and 0 for 8 = 1. Equations (6a - c) thus 
acquire the form 

(K1) (9a) 

(9b) 

So - - 1 2 + . 2 a Y _ (D D 1 - D 1 D 2) X 
nM 1 - 8 

(9c) 

It is apparent that the variable Y has for X = 1 (i.e. 8 = 0) in all three cases the 
same value Yo = nM/masO' The dependence of Y on X is, however, different for 
different adsorption orders. In the case of the first order, the dependence is linear 
and attains a finite value of Y = (1 - D1 D2 ) nM/aso for X = 0 (8 = 1), as apparent 
from Eq. (9a). For both variants in the case of the second order, Y increases to 
infinity in this limit (Fig. 2). A plot of Yagainst X, based on experimental data, 
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leads to the determination of the multiplier msoa/nM and enables one to estimate 
the adsorption order. In the case of adsorption of the first order, which gives a linear 
plot of YvsX, the product of DID2 can also be determined. In the case of dis socia
tive adsorption, however, the decision between the two possible variants is difficult. 
For their distinguishing, it is convenient to introduce the following transformation 
of coordinates: 

1 1 - 8 
R = -- c---

8 8 2 ' 

1 1 - 8 
Z =-- + --In(l - 8). 

8 8 2 

In this way, equations (6a-c) acquire the form 

R = D)D2 + (1 - D j D2)Z, 

R = D,D2 + (D! - D j D2 )Z, 

(lOa) 

(lOb) 

(lla) 

(11 b) 

(Ue) 

Thus, the nonlinear dependence of 8 on c is linearized for all three variants of our 
model. Typical dependences are shown in Fig. 3. The constants Dl and D2 can be 
determined either from the limiting values of R or from the slope of the dependences 
of R on Z. The variable Z lies in the interval <0·5, 1) for 8 E <0, 1). 

In the case of adsorption of the first order, we have R = 1 for Z = 1 regardless 
of the values of Dl and D2 • For Z = 0'5, R = (1 + Dl D 2 )/2. For adsorption of the 

fl<;. 2 

Dependence or Yon X (first transformation). 
Multiplying ractor "M/masO = 1. 1 Constant 
sticking probability; 2 Langmuir model of 
tlrst order; 3 Langmuir model of second 
order; 4 Kisliuk model of first order (KI), 
/)1 /)2 0 - 0'5; 5 Kisliuk model of second 
order (1\2), D1 = 0'9, D2 = I 
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second order with a precursor above one adsorption center (K21)' we have R = 
= (Dl + D 1 D2 )/2 for Z = 0'5, and R = DI for Z = 1. In the case of adsorption 
of the second order with a precursor above two neighbouring centers, R is constant 
in the whole interval. Limiting cases R = I, R = Z, and R = 0 correspond to 
constant sticking probability and Langmuir model of the first and second order. 
If the experimental data are plotted in the Z, R coordinates, the adsorption order 
and the constants Dl and D2 can be reliably determined. Difficulties may occur if 
(a) for variant (K21) the constant Dl ~ I; this variant can then hardly be distin
guished from (Kl); (b) for variant (K21) the constant D2 ~ 1, leading to difficult 
distinction from variant (K22 ). 

To overcome these difficulties, the constants DI and D2 must be examined more 
closely. The first of them can be expressed as 

(I2) 

If we use the rate constants in the usual form 

(13) 

and assume that ED > EA, then 1 > DI > (I + VD/VAr 1 for 0 < T < 00. Ana
logously, the constant D2 (for kM > 0) 

(14) 

obeys the inequality 1 > D2 > (I + VD/VMt 1 for ED > EM in the same temperature 
interval. It is apparent that both Dl and D2 depend markedly on the temperature. 
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FIG. 3 

Dependence of R on Z (second transforma
tion). 1 Constant ~ticking probability; 2 
Langmuir model of first order; 3 Langmuir 
model of second order; 4 Kisliuk model of 
first order (KI), Dl D2 = 0'5; 5 Kisliuk 
model of second order (K2 1), Dl = 0'9, 
D2 = I; 6 as 5, but D2 = 0; 7 Kisliuk model 
of second order (K2 2 ), DI D2 ~.C 0'3 
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Hence, the mentioned difficulties in distinguishing the variants can be overcome 
by studying adsorption at several different temperatures. 

The characteristic feature of the method described is the considerable sensitivity 
of the transformations to the determination of the instant of surface saturation 
and the limiting value Yo. As can be seen from Fig. 1, the coverage in the case of 
adsorption with a mobile precursor attains rapidly a value around 95% and further 
changes only slowly. It is therefore rather difficult to find out at which exposition 
t he limiting coverage is attained, and the experimental curve may be normalized 
by using a not too accurate value. The influence of such inaccuracy on the Y-X 
and R-Z dependences is shown in Figs 4 and 5. 

In the case of the Y-X dependence (Fig. 4), an error in the determination of the 
limiting coverage causes the same error in the determination of the multiplying factor. 
However, it has a considerable influence on the character of the dependence and can 
cause confusion of the molecular with the dissociative mechanism, if no other re
presentation is used. 

In the case of the R-Z dependence, the deviations are notable especially in the 
boundary regions. Overestimation of the coverage (i.e. attributing the value of 
H = 1 to a not quite saturated surface) leads only to slight errors, whereas under-
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FIG. 4 

I 
I 
12 
I 
I 
I 
\ 

' .... _----------

05 x 10 

Dependence of Y on X - influence of in
correct determination of limiting coverage. 
Multiplying factor nM/musO = 1. 1 Kisliuk 
model of first order (Kl), D1D2 = 0'5; 2 
coverage underestimated by 5%; 3 coverage 
overestimated by 5% (experiment finished 
prematurely) 
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Dependence of R on Z - influence of in
correct determination of limiting coverage 
and Yo. 1 Kisliuk model of first order (Kl), 
Dl D2 = 0·5; 2 coverage overestimated by 
5% (experiment finished prematurely): 3 
coverage underestimated by 5%: 4, 5 ±5% 
error in the determination of Yo 
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estimation leads to nonlinearity for Z --+ 1. An error in the value of Yo leads to 
large deviations for Z --+ 0'5. Nonlinearity in this representation indicates that either 
the limiting coverage or the value of Yo was incorrectly determined. If changes of 
these values in the range of a few per cent do not lead to linearization of the R-Z 
dependence, it can be assumed that the real situation does not correspond to the 
assumptions inherent in the model used, which is therefore unsuitable for the descrip
tion of the experimental data. 
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